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After a careful consideration of the laws of generation, advection, diffusion and dissipa- 
tion of turbulent kinetic energy proposed by Prandtl (1945) and Emmons (1954), 
equations of motion and turbulent kinetic energy for the vortex flow near a solid end 
wall are established. These equations are then evaluated by a numerical procedure. 
Care is taken to specify boundary conditions such that satisfactory matching of the 
solution with the main vortex is assured. The agreement between the predicted mean 
velocity distribution and the experimental data is remarkably good. In  addition, several 
interesting characteristics are predicted by the theory: (i) the vertical distribution of 
horizontal velocity is oscillatory in the inner region, whilst it is of the ordinary boun- 
dary-layer type in the outer region; (ii) the maximum velocity in the boundary layer 
can exceed that in the main vortex by a considerable amount and (iii) the minimum 
pressure of the vortex does not occur in the vortex-core root as has been generally 
believed. 

1. Introduction 
Vortex boundary-layer flow on a solid wall like that shown in figure 1 occurs in many 

engineering situations such as the flows in the vicinity of the end walls of cyclones, 
Hilsch tubes and vaneless diffusers. In  addition, a theory of the end-wall boundary- 
layer flow can assist an understanding of the flow near the ground in natural tornadoes 
and dust devils. Difficulties of the problem due to the nonlinearity of the governing 
equations and the rapid variation of the velocity of the main vortex were encountered 
by the early investigators. Because of these difficulties previous theoretical treat- 
ments of the vertical distribution of the velocity components in the vortex boundary 
layer have been limited to similar solutions, in which the tangential velocity of the 
main flow is given by the power law v+ cc ( T + ) ~  and its radial velocity is assumed to be 
zero, e.g. see Bodewadt (1940), Stewartson (1957), Mack (1964) and Kuo (1971). These 
solutions are difficult if not impossible to match with the main vortex. An additional 
difficulty with vortex boundary-layer flow is that such flows are often turbulent and 
few attempts have been made to establish turbulent models. 

An objective of this research is to bring the understanding of the turbulent vortex 
boundary layer up to the modern level of satisfaction. To achieve this, a numerical 

t This work was carried out under NSF Grant GK41469 while the author was associated with 
the George Washington University so it does not represent an NBS publication; it is also noted 
that the author’s name has been changed from S.W. Chi. 
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FIGURE 1. Sketch of turbulent end-wall boundary layer under investigation. 

procedure for solving the full equations governing laminar vortex flow without simpli- 
fying assumptions was developed by Chi & Jih (19741, the requirements on the upper 
boundary conditions for satisfactory matching of the boundary-layer solution with 
the main vortex were established by Chi (1974), and measurements of the mean velocity 
distribution in a turbulent vortex boundary layer were made by Chi & Costopoulos 
(1974). Also, a preliminary examination of the turbulence theory was made by Chi & 
Glowacki (1974), but was limited to the region at large radius, far away from the 
vortex-core root. 

This paper represents an attempt to extend the treatment of turbulent vortex 
boundary-layer flow to cover not only the region a t  large radius but also the vortex- 
core root. An important feature of the flow in a vortex boundary layer is that the 
turbulence which is generated in the remote high shear region of the boundary layer a t  
large radius must be conveyed to the vortex-core root by the action of advection and 
diffusion. For quantitative evaluation of this feature, it is necessary to postulate 
mathematical relationships describing the processes of generation, advection, diffusion 
and dissipation of turbulent energy. Fortunately, there are several proposals which 
may be used, including those of Prandtl (1945), Emmons (1954), Glushko (1965) and 
Spalding (1967), although none of these authors has applied the equation to vortex 
flow. 

In  order to determine the length scales and the diffusion constant which appear in 
the postulated relationships for the generation, dissipation and diffusion of turbulent 
energy, it would be necessary to appeal to experimental data for the vortex boundary 
layer which are not available. However, as the present formulation is reducible to two- 
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dimensional flow, it is convenient to re-examine the data for zero-pressure and linear- 
shear layers, which have already been treated by Townsend (1961) and Spalding (1967) 
from a point of view which exhibits both similarity to and differences from that of the 
present paper. 

With the length scales and the diffusion constant so determined, the full equations of 
motion and turbulent energy are solved by a numerical procedure without simplifying 
assumptions. Although the lack of turbulence measurements prevents a complete 
comparison of the present theory with experiments, the agreement of the present 
theory with the measured mean velocity has been found wholly satisfactory. 

2. Vortex boundary-layer turbulence model 
From the turbulence model proposed by Prandtl(1945), Emmons (1954), Glushko 

(1 965) and Spalding ( I  967) for two dimensions, the equation describing the balance of 
advection, generation, diffusion and dissipation of turbulent kinetic energy for axisyrn- 
metric flow of an incompressible fluid (e.g. see Hinze 1959) can be written as 

[p(uak/ar+wak/a~)] - , ~ ~ { 2 [ ( a ~ / a r ) ~ +  (aw/az)2] + (au/ax + aw/ar)2 
Advection Generation 

+ (at#az)2 + ~ ~ [ a ( u / r ) / a r ] ~ )  - {a[(p +rt) ak/az]/a~ 

+ a[(p  + rt) ak/ar]/ar} + B = 0. 
DifTusion 

Dissipation 

Also, the following laws can be used to describe the turbulent eddy viscosity ,ut, the 
diffusion coefficient yt and the dissipation e respectively: 

rut = Plfl k*, Yt  = Pt /C  E = Pk*/l,. (2144) 

In  the above equations, (u, v, w) and (u’, v’, w) are the components of the mean and 
fluctuating velocities, respectively, in the cylindrical co-ordinate system (r,  0, x )  while 
k is the turbulent energy, defined as & ( ~ z + ~ z + ~ 2 ) ,  p the density, /A the laminar 
viscosity, cr the diffusion constant, l f i  the length scale for turbulent momentum trans- 
fer and lo the length scale for turbulent dissipation. In  the absence of empirical infor- 
mation on turbulence for vortex flow, it is assumed that the turbulent diffusion con- 
stant and length scales can be deduced from the experimental data for two-dimensional 
flow on solid walls. This assumption is plausible, because the correct theory of vortex 
flow must be reducible to two-dimensional flow at large radius and zero circulation. 

Experimental information on zero-pressure layers, examined by Hinze (1 969), 
shows that the ratio of the turbulent shear velocity ~ / p  to the turbulent kinetic energy 
k is 0.3 on average, i.e. 

T/p = 0-3k. 

The measurements of Klebanoff (1955) for the flow examined by Chi & Chang (1969) 
and Chi & Glowacki (1974) indicate that Prandtl’s mixing length 1, defined by the 

( 6 )  

equation 

is given by 

L[O*4(z/L) - O . ~ ( Z / L ) ~  + O.~(Z /L)~]  [l - exp ( - 0.05p(~/p)*  x/ ,u) ]  

0.1L for x 3 L, 
for x < L, 

1 = (  

8-2 
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where L is the boundary-layer thickness. Comparison of ( 2 )  and (6), bearing in mind 
the relationship (5) between r / p  and k,  shows that 1, = (0.3)*1, hence with 1 given by 
( 7 ) ,  the form of 1, for the present theory can be written as 

L[0~219(~/L)-O~274(~/~)~+0~110(z/L)~] [ l  -exp( -0.0274pktz/p) for x < L 
0.055L for x 2 L. 

1 = (  
( 8 )  

For the dissipation length lo, a further examination of the zero-pressure layer is 
made. It is now well-known, e.g. see Townsend (1961),  that in such flows the balance 
between generation and dissipation of turbulent energy dominates, i.e. E = a. For the 
zero-pressure layer the turbulent generation a is equal to pr &/ax;  a can therefore be 
derived in terms of p ,  k and 1, from ( 2 )  and (5) as 

a = O.O9pk~/l,, ( 9 )  

and the turbulent dissipation is defined by ( 4 ) .  It then follows that lo = 11.111, and 
hence from (8) we deduce that 

ID =( 0.608L for x 2 L. I L[2*434(z /L)  - 3 . 0 4 3 ( ~ / L ) ~  + 1 . 2 1 7 ( ~ / L ) ~ ]  [ l  -exp ( - 0.0274pk4x/p)] for z < L, 

(10) 

In  order to determine the diffusion constant u in ( 3 ) ,  a two-dimensional linear-shear 
layer in the neighbourhood of solid wall, i.e. at  small x ,  is examined. In  such layer, 

r /p = dP/dx .  ( 1 1 )  

Experimental data of Schubauer & Klebanoff (1951) under these conditions have been 
examined by Townsend (1961),  who expressed the data in the form 

u = 4(dP/dx)  24 + constant. (12 )  

1, = 0.2192, lo = 2.4342, (13 )  

(14 )  

(15 )  

(16)  

At small z our turbulent length scales (8) and (10 )  become 

so the present turbulent energy equation ( 1 )  reduces under these conditions to 

k8 / (2*4342~)  - d[(0*219k*/u) dk/dx]/dz - (zdP/dZ)2/(0*219zk4) = 0.  

k = ( x d P / d x )  (0.09 - 0*072/a)-*.  

The solution of this equation is easily shown to be 

Combination of this result with (10) and the shear stress for the flow under considera- 
tion, 

r /p  = 0.2 19zkt' du/dz,  

leads to an expression for the velocity u: 

u = 9-132(&09 - O*Of2/u)f (dP /dx)  x t  + constant. (17 )  

It can therefore be deduced by comparison of (12 )  and (17 )  that the diffusion constant 
u is equal to 1.35. 

From the foregoing consideration, we have established a turbulence model ( 1 )  for the 
vortex boundary-layer flow withpt, yt,  E ,  Z,'and ZD described by ( 2 ) ,  ( 3 ) ,  (4), ( 8 )  and (10) 
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respectively and c equal to 1.36. The characteristic length L for the vortex boundary 
layer, which appears in (8) and (lo), can be shown (e.g. see Chi, Ying & Chang 1969) to 
be equal to r,/(u+r+/v)*. 

3. Governing equations and boundary conditions 
Governing equations 

On the basis of the turbulent model established above, the components of the stress 
tensor may be obtained by multiplying the corresponding components of the strain 
tensor by an effective viscosity perf which is equal to the sum p+pt of the laminar 
and turbulent viscosities. Consequently the stress components for axisymmetric 
turbulent flow of an incompressible fluid assume the form 

cr = - P + 2peri aular, rre = p e r f  ra(v/r), 

= - P + 2peii u/r, ren = perf av/az, ) (18) 

en = - P + 2,~eir awlar, rnr = ,uen(au/8z +awl&), 
and the three momentum equations for the vortex flow are 

pu au/ar +pw au/az -pv2/r = - aP/ar + r-1a(2r,uerf au/ar)/ar 

+ a[,uen(au/az + awlar)] az - 2peri zG/r2, 

p u  av/ar +pw avlaz +puv/r = a(peii av/az)/az + r-2a[r3,ueff a(v/r)/ar]/ar, 

pu aw/ar +pw aw/az = - aP/az + a(2,uerr aw/az)/az + r-V[rperf(8u/az + a~ /ar ) ] /ar .  

(19) 

(20) 

(21) 

aur/ar+-awr/az = 0. (22) 

u = - r-l a$/&, w = r-l a$/ar, (23) 

Q = auiaz - aw/ar, r = rv. (24)) (25 )  

The continuity equation is 

The stream function $, vorticity Q and circulation I? are defined as follows: 

Equations of motion with the circulation, vorticity and stream function as the 
variable can be derived from (20), (19) and (21) and (22) respectively. It can be 
shown, e.g. see Gosman et al. (1969, p. 55) for two-dimensional flows in general and 
Chi & Jih (1974) for vortex flow in particular, that each of these equations as well as the 
turbulent energy equation has the form of the general elliptic equation 

a{a($ a$/ar)/az - a($ a$/&) - {i?[bra(c$)/i?z]/az + a[bra(c$)/i?r]/ar) + d = 0, (26) 

where $ is the dependent variable, viz. Q/r,  I?, $ or k, and a, b, c and d stand for various 
functions, which are summarized in table 1. 

(defined as ,u + p t )  can be calculated from (2) and (8)) and ID 
from (10). Hence (26) represents four elliptical differential equations for four dependent 
variables: $, Q/r, I? and k, respectively. Integration of elliptical differential equations 
requires conditions on the variables on all field boundaries specified. These conditions 
are described below. 

Convection Diffusion Source 

In  table 1, ,ut and 
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Boundary conditions 
The boundary conditions on the ground surface, the centre-line of the vortex and at  a 
large radius from the centre-line can be derived from the requirements of physical 
continuity, axisymmetry of the flow and two-dimensionality of the vortex at  a large 
radius, respectively. These conditions in terms of the vorticity, stream function, circu- 
lation and turbulent energy are as follows. 

A t r = O ,  n/r = 8(9b1 ri - ?h2 r:)/rI rg(ri - r:), 

At r = r+, Q / r  = - r-2(P$/az2 + a2$/ar2), P a )  

A t z = O ,  G/r  = - 3$J(r2z2,) + &(s2/r)l, (29 a )  

(27 a)  

$ = 0, r = 0, akpr  = 0. (27b-d) 

a$/ar = 0, r = re=8+, ak/ar = 0. (28 b-d) 

$ = o ,  r=o, k = o .  (29 b-d) 

In  the above equations, the subscripts 1 and 2 indicate values at grid points next and 
next by one, respectively, to the boundary under consideration; the superscript + 
indicates a value at the maximum height or radius, as appropriate, of the flow field 
under investigation. For brevity, details of the derivations of the above conditions are 
not presented here, but can be found in the paper by Chi & Jih (1974). However, care 
has been taken to specify upper boundary conditions at large z, say z+, such that satis- 
factory matching of the present solution with the main vortex can be assured. Pro- 
cedures for deriving the upper boundary conditions are described below. 

It was shown by Deissler & PerImutter (1960) for turbulent flow and by Lewellen 
(1962) for laminar flow that for a main vortex outside the boundary layer the most 
general form for $, in the present notation, is 

and I' may be considered independent of z. Consequently, the following boundary 
eonditiom at large height have been derived from the definitions (23) and (24) of $ 
and Li respectively. 
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At z = z+, a( n/r)/az = 4a2FI/a(r2)2, (31a) 

a$/& = Fl(r2), (31b) 

a k p z  = 0. (31 d )  

It can be observed in the above equations that the gradients of 9, Q/r  and k instead of 
the variables themselves have been chosen in the upper boundary conditions. The 
reason for this choice is that these values for the main vortex are dependent upon the 
boundary-layer flow, which is not known until after the boundary-layer solution has 
been obtained. On the other hand, the present gradient-type boundary conditions do 
not suffer from this defect. 

4. Numerical procedure and computer program 
For numerical integration of (26) with $, Q/r,  I? and k as dependent variables, 

along with boundary conditions (27)-(29) and (31), the flow field in 0 < r < r+, 
0 6 z 6 z+ is represented by a rectangular grid system on a meridional ( r ,  x )  plane with 

rz+l = rz+Ar, [i = l (1)  161, 

zj+l = ~ j + A z j  [j  = l(1) 161. 

(32) 

(33) 

The values of r+ and z+ are dependent upon the physical dimensions of the vortex and 
non-uniform grid spacings Arz and Azj have been used. Examples of these values can be 
found in $5.  As will be seen in $Lj7 the grid is finest in the region where the shear 
stresses vary most rapidly, i.e. near the ground surface and in the vortex core. All 
derivatives in the governing equations are replaced by algebraic differences involving 
the values of the dependent variables at  the grid nodes. An upwind difference scheme 
for the elliptical equation (26) which was described in detail by the author and a co- 
worker (Chi & Jih 1974) in their studies of laminar vortex flow has been adapted by 
the author for this study. 

The Gauss-Seidel successive iterative method, e.g. see Ames (1965), is used to solve 
the set of algebraic difference equations. This method is based upon using the improved 
values immediately in computing the improvements for the next grid node. However, 
the boundary conditions (27)-(29) and (31) are of two different types: the first specifies 
values of the variables themselves while the second specifies gradients. The former 
conditions are set at  the beginning of the first iteration cycle and remain unchanged at  
successive iterations; the latter must be improved at  the end of each iteration cycle. 

A computer program in Fortran IV  has been written to solve the algebraic 
difference equations using the iteration method described above. Before iteration 
starts, initial values are set: at the interior nodes all the variables are set to zero while 
the boundary values are calculated from (27)-(29) and (31). The first iteration cycle is 
then initiated. Each iteration cycle is subdivided into four subcycles in the order 
Q/r,  $, I' and k. In  each subcycle, calculation begins a t  the sixteenth column of the 
nodes (i.e. i = 16) withj = 16( - 1) 2, then the node values in the fifteen and fourteenth 
columns rend so on are calculated until the second column has been calculated. Finally, 
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the boundary values are updated, using the gradient-type boundary conditions among 
(27)-(29) and (31). The above iteration cycle is then repeated until the preset con- 
vergence criterion (that all dependent variables for successive iterations agree to 
within 0.5 yo) is met. 

At  the end of the iteration process, the values of Q/r ,  $, I', k and pen a t  the grid nodes 
are stored, and the velocity components u and w are recovered from the definition of 
$ while w is recovered from that of I'. The pressure Po - P, where Po is the value of P a t  
z = 0, r = r f ,  is then recovered through integration of the momentum equations (19)- 

(21). 
When the program was first run considerable difficulty was experienced in 

attaining convergence of the turbulence energy k. This difficulty was overcome by 
developing a repeated under-relaxation procedure. In  this procedure, instead of the 
newly calculated values of k, the previous k plus 0.2 of the difference between the 
current and the previous k is used as the new value of k in the calculation. 

5. Discussion of results and comparison with experiments 
Measurements of the horizontal components of the mean velocity distribution in the 

end-wall turbulent boundary layer of an intense vortex have recently been made by 
the author and a co-worker. Details of the experimental set-up (figure 2) were given by 
Chi & Costopolous (1 974). Briefly, it consists of two annular cylinders of inner diameters 
44.5 em and 58.4 cm respectively, the thickness of the inner cylinder being 0.635 cm, 
and two end plates. The distance between the top and bottom plates is 91.4 em. Com- 
pressed air was introduced into the annular space between the two cylinders and 
flowed into the inner cylinder through four columns of evenly pitched tangential 
holes (each column containing forty-eight 0.692 em diameter holes 1.905 cm apart) 
drilled through the wall of the inner cylinder and subsequently discharged to the atmo- 
sphere through a 3.175 em hole at  the centre of the bottom plate. The horizontal com- 
ponent of the velocity and its direction in the vicinity of the top plate were measured 
by a directionally sensitive wedge-shaped hot-film probe. The hot film was on the axis 
of the cylindrical stem of the probe, and the probe was traversed axially through the 
top end plate at  different radii so that the horizontal velocity a t  different r,  8 and z 
could be measured. Figure 3 shows the measured radial distributions of u and w at 
large z (i.e. z = 10 em) and figures 4(a)  and (a) show the measured values of u and w, 
respectively, us. x at several radii. Figure 3 also shows that the measured u and v 
distributions at  large 2, i.e. in the main vortex, can be correlated by the equations 

u = --P1(r2)/r, (34) 

with I?, = 27 900, Fl(r2) = 2300[1- exp ( - 0-000183r2)] (36) 

when cgs units are used. 
As a numerical example, the present computer program has been used to calcu- 

late the end-wall boundary-layer flow under the same main vortex conditions as in the 
experiments. In  this calculation, the function Fl given in (36) has been employed to 
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FIGURE 2. Schematic diagram of a laboratory vortex. 

evaluate the boundary conditions (31 )  at z = z+. The non-uniform.grid system used in 
this calculation had 

(37) 

(38 )  

z = O(0.127) 0-762(0-254) 1-27(0.635) 2-5411-27) 7.62,10-16 cm, 

r = O(0-635) 3.81(1-27) 7.62(2-54) 20-32,22-25cm. 

Figures 5 ,  6 and 7 show contour plots of the calculated stream function $, turbulent 
kinetic energy k and static pressure P - Po. The calculated radial velocity u and tan- 
gential velocity v are plotted us. z for several radii in figures 4 (a) and (b )  for comparison 
with the experiments. 

The ability of the present theory to correlate the measured mean velocity is demon- 
strated in figures 4 (a) and ( b )  by the excellent agreement between the theory and the 
experiments. In addition, several interesting boundary-layer characteristics may be 
observed in these figures. At large z and r ,  the tangential velocity dominates, as can be 
seen in figure 3 ;  the force balance for this region is therefore characterized by a balance 
between the radial pressure gradient and the centrifugal force. Near the ground sur- 
face, retardation of the tangential velocity is seen in figure 4 ( b ) .  This retardation is 
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FIGURE 3. Tangential and radial velocities for the main vortex outside the 
boundary layer. 

u (m/s) 
FIGURE 4 (a). For legend see facing p&ge. 
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2 4 0  2 

FIQURE 4. Memured and predicted values of (a) u and (b )  v v8. z at several radii 

I 
0 1 2 3 4 5 6 7  8 

FIUURE 5. Predicted 
r (cm) 

(v) 1700, (vi) 2000. 
contours of stream function. @ (cm3/s): (i) 0, (ii) 150, (iii) 600, (iv) 1200, 

accompanied by a reduction in the centrifugal force; the balance between pressure and 
the centrifugal force is thereby destroyed. The flow in this region is thus characterized 
by the entrainment of fluid into the boundary layer as indicated by the deflexion of 
the streamlines towards the ground surface (see figure 5 )  and the large induced radial 
velocity u (see figure 4a). The eventual eruption of the entrained boundary-layer 
fluid at  the vortex-core root can be seen in figure 5 from the streamlines at small r and 
z .  In addition the entrained fluid carries circulation and turbulent energy from large 
radii to a position near the axis of symmetry, as can be seen in figure 4 ( b )  from the 
largev and in figure 6 from the large k at small radius. For example, at r = 1-27 cm the 
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6. 

ii) ii) 

r (cm) 
Predicted contours of turbulent kinetic energy. k (cma/sa) : (i) 400, (ii) 

(iv) 5000, (v) 10000, (vi) 20000, (vii) 50000, (viii) 75000. 

h _j 
E 4  

3 

v 
h, 

ti) (v) (iv) iii) 

1000, (iii) 2000, 

7 8  

r (4 
FIUURE 7. Predicted contours of pressure. Po- P (mb) : (i) 0.025, (ii) 0.05, (iii) 0.125, (iv) 0.25, 

(v) 0.35, (vi) 0.5, (vii) 0.7. 

maximum tangential velocity in the boundary layer is 10-5 m/s, which is more than 
twice the maximum tangential velocity in the main vortex of 4.8 m/s. A high vacuum 
at the vortex core, for example at the centre of tornedo-like vortices, is well known. 
However, figure 7 indicates that the vacuum at the vortex-core root could be smaller 
than that at high altitude, This appears to be due to deceleration of the entrained fluid 
at the vortex-core root. 

6. Summary and conclusions 
A turbulence theory has been developed for the vortex end-wall boundary layer, 

which accounts for the generation at large radii of turbulent energy which diffuses 
and convects into the neighbourhood of the vortex-core root. This theory has been 
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incorporated into the equations of motion for the vortex boundary-layer flow. The 
resultant equations have been solved by a numerical method without simplifying 
assumptions. A procedure has also been developed for specifying boundary conditions 
for the main vortex such that satisfactory matching of the boundary-layer solution 
with the main flow can be assured. 

The calculated horizontal components of the mean velocity are compared with 
values measured under the same conditions. The ability of the present theory to corre- 
late the empirical data is shown to be good. I n  addition several interesting character- 
istics of the turbulent vortex boundary layer are predicted by the theory and discussed 
above. For example, (i) the vertical distribution of horizontal velocity is oscillatory in 
the inner region whilst it is of the ordinary boundary-layer type, without oscillation, 
in the outer region; (ii) the maximum velocity in the boundary layer can exceed the 
maximum velocity in the main vortex and (iii) the results contradict the general 
belief that the minimum pressure occurs in the vortex-core root. 

This work was supported by the National Science Foundation under Grant 
GK41469. The author wishes to express his appreciation to the Foundation. The 
author would also like to express his appreciation to Mr J. Jih and Mr T. Costopoulos 
for their assistance with computer programming and experimental measurements, 
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